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Nonlinear transport through interacting single-wall nanotubes containing a few impurities is studied
theoretically. Extending the Luttinger liquid theory to incorporate trigonal warping and chirality effects,
we derive the current contribution /, even in the applied voltage V and odd in an orbital magnetic field B,
which is nonzero only for chiral tubes and in the presence of interactions.

DOI: 10.1103/PhysRevLett.97.076402

Electronic transport experiments on individual single-
wall carbon nanotubes (SWNTs) [1] have revealed ample
evidence for the Luttinger liquid (LL) phase of one-
dimensional (1D) interacting metals induced by electron-
electron (e-¢) interactions. In its simplest form, the effec-
tive low-energy theory for interacting SWNTs [2] is in-
sensitive to the chiral angle 6 [3,4] describing the wrapping
of the graphene sheet. This fact can be rationalized by
noting that, to lowest order in a k - p scheme, the graphene
dispersion reflects an isotropic Dirac cone around each K
point in the first Brillouin zone [3]. Imposing periodic
boundary conditions around the SWNT circumference sli-
ces this cone and gives identical dispersion for all 8, as
long as the SWNT stays metallic. Such an approach is,
however, insufficient for a description of the magnetotran-
sport effects in chiral tubes. Therefore, we extend the
theory [2] to include chirality effects by taking into account
trigonal warping, tube curvature, and magnetic field B and
then compute the nonlinear two-terminal magnetoconduc-
tance. While the well-known Onsager symmetry G(B) =
G(—B) [5] excludes linear-in-B terms in the linear con-
ductance, such terms can appear out of equilibrium [6—8],
with first experimental observations reported for SWNTs
[9,10] and semiconductor quantum dots or rings [11-15].

The current contribution /, odd in B and even in the
voltage V is of fundamental and unique importance, mainly
due to two reasons. First, it requires a noncentrosymmetric
(chiral) medium, with the sign of I, depending on the
handedness (enantioselectivity) [6], since the current den-
sity is a polar vector but the magnetic field an axial one.
Thus, I, # 0 requires the simultaneous breaking of time
reversal symmetry (by the magnetic field) and of inversion
symmetry (by the chiral medium). Second, standard argu-
ments based on the Landauer-Biittiker scattering formal-
ism valid in the noninteracting case [7,8] show that I, # 0
also requires interactions. At low temperature (7), e-e
interactions should therefore contribute to /, in leading
order. Measurements of /, probe interactions and chirality
in a very direct manner, potentially allowing for the struc-
tural characterization of chiral (sin66 # 0) interacting
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nanotubes via transport experiments. Nonetheless, apart
from the classical phonon-dominated high-7 regime [7],
no predictions specific to SWNTs have been made so far.
Here we determine the current contribution I,(V, T) linear
in the parallel orbital magnetic field B (Zeeman fields play
no role here), for SWNTs in good contact to external leads.
The simplest case allowing for I, # 0 is found when
including at least two (weak) elastic scatterers, represent-
ing either defects or residual backscattering induced by the
two contacts. Our theory includes the often strong e-e
interactions using the bosonization method [16] and holds
for arbitrary chiral angle 6. Interactions are characterized
by the LL parameter K = 1 in the charge sector [see
Eq. (6) below] with typical estimate K = 0.2 [2]. Our
result for /, [see Egs. (9) and (12)] is nonzero only for
chiral (sin66 # 0) interacting (K <1) SWNTs and
changes sign for different handedness (8 — —6). We pre-
dict oscillatory behavior of I, as a function of bias voltage,
where the oscillation period depends on the Luttinger
parameter K [see Eq. (15)]. The coefficient [10]

1,(\V,T
a(T) = lim e 5 )
v—0 VB

ey
is shown to exhibit power-law scaling at 7 — 0, with a
negative exponent that is again determined by K. Including
only elastic impurity backscattering, a(T') does not change
sign with T for otherwise fixed parameters.

Chirality effects in the low-energy theory come about
when one includes trigonal warping in the band structure.
Its main effect is to introduce different Fermi velocities v,
[17] for right- and left-moving excitations (r = R/L = =)
around the two distinct K points (o« = =*). All these veloc-
ities coincide when disregarding trigonal warping and in a
nominally metallic SWNT are given by v,, = v =8 X
10’ m/ sec. For clarity, we consider an electron-doped
SWNT with equilibrium chemical potential u = hvkp >
0 well inside the conduction band and omit the valence
band. Including the trigonal warping to lowest nontrivial
order [3,7], we find

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.97.076402

PRL 97, 076402 (2006)

PHYSICAL REVIEW LETTERS

week ending
18 AUGUST 2006

2

kJ.a
- —2<1 + a cos36
kg

kiqa3— 2kﬁ_a/k2F
43 1=k, /K

Vo = U4l

k K2
- ra sin302L 1— ﬂ) )

The effects of tube curvature and magnetic field enter via
the quantized transverse momenta

ki ,R=n—av/3+ ®/®;+ accos(30), 3)

where a = 0.246 nm is the lattice spacing, R the tube
radius, ® = 7R’B, ®; = h/e the flux quantum, and the
tube curvature results in ¢ = ka/R, with k = 1 [3]. Here
integers n with |k ,| < kr are allowed; we focus on the
lowest band » = 0 in what follows. The index » distin-
guishes nominally metallic (v = 0) and semiconducting
(v = =1) SWNTs, and for simplicity, from now on we
assume v = 0. However, with minor modifications, our
theory below also applies to strongly doped semiconduct-
ing tubes. We mention in passing that chirality effects are
also important for other physical quantities. In particular,
scattering by a long-range potential in metallic SWNTs
depends on chirality [18,19].

In terms of annihilation fermion operators R, (x) and
L, (x) for right- and left-movers of spin o = *, respec-
tively, the usual linearization of the band structure around
the Fermi points then yields H = H;; + Vg, (we set h =
kg =1),

Hy = =i3 [ dxraRled Ry = viaLlod Lay)
aag

V,
+ 70 f dx(RTR + LTL)?, 4)

Vs = f dxU(x)(e 2% *RTL + H.c.), (5)

where 4V, /mv = K~ — 1 describes e-e forward scatter-
ing interactions [20], and o summations are implied
when not given explicitly. Elastic disorder leads to Vi,
e.g., due to impurities, defects, or substrate inhomogene-
ities. We keep only the intraband backscattering potential
U(x), which yields the dominant impurity effect [2]. This
Hamiltonian can be efficiently treated by (Abelian) boson-
ization [16]. Introducing four bosonic fields ¢;(x) and their
dual 0;(x), with i = (¢+, c—, s+, s—) denoting the total
(relative) charge (spin) modes, the clean Hamiltonian for
UV, = v is [2]

HE,OZ = % fdx[K_l(ax¢c+)2 + K(axec+)2]

ul’l
+72

i#c+

] dl(0,6,7 + (0,607 (©)

where u, = v/K is the plasmon velocity for the ¢+ mode,
and u,, = v for the three neutral modes. Including the v,

differences in Eq. (2) then brings about two new features,
acting separately in the decoupled charge (i = ¢ =) and
spin (i = s = ) sectors: (i) couplings between total (+) and
relative ( — ) modes and (ii) couplings between mutually
dual (6;, ¢;) fields. The first leads to tiny quantitative
corrections but no qualitative changes and is neglected
henceforth. Point (ii) is crucial, however, since it implies
different velocities (u. g/, and u, g/;) for right- and left-
moving plasmons. This eventually produces the current
contribution /, in the presence of impurities. To linear
order in B, we find

uC,R/L/U = 1/Ki 5,

_ P/, 5 . (7
N (a/R)? sin(60).

Note that § # 0 requires both B # 0 and chirality sin68 #
0. Moreover, 6 has opposite sign for opposite handedness.
It essentially describes the difference of R/L-moving ve-
locities and depends linearly on B.

Next we address the computation of 7,(V, T), where the
current operator is (2e//m)d,¢.. An important point
concerns the inclusion of the applied voltage V in a two-
terminal setup. For weak impurity backscattering U(x), it is
sufficient to address the clean case with adiabatically con-
nected leads, where a time-dependent shift arises [21],
bor — oy + eVit//m. However, with chiral asymmetry
vg # vy, there is an additional effect [22] due to the
different density of states vg,;, = 2/mvg/;, for R/L mov-
ers. Starting from the equilibrium chemical potential wu,
when applying a voltage, the chemical potentials wg/;, of
R/L movers are set by the left and right reservoirs, respec-
tively, where ur — w; = eV. Relative to the equilibrium
density, R/L movers are thereby injected with density
PR = Vr/L(pp/L — p). We may now write g/, = p +
Au *+ eV/2, where Au is determined by the condition
that, in an adiabatically connected impurity-free quantum
wire, no charge can accumulate in the steady state [21],
p% + p? = 0. This yields Au = 8eV/2, where & =
(vg — vy)/(vg + vy) has been specified in Eq. (7), imply-
ing the voltage-dependent shift

M’LR/L/U - 1 + 6,

2
kp — kp + 8eV/2vq, SURYL

=v(l — 82
(8)

in Eq. (5). Under the nonequilibrium Keldysh formalism,
to second order in U(x), I, then follows as

Vg =
UR+UL

2¢eK [
I, = —e—2 f dt[dde sin(kpx)U(X + x/2)
(ma)* ) -w

X U(X — x/2) cos(eV[t + 6x/vp]) Imei™d 0 (9)

where G is the sum of the lesser Green’s functions for the
four plasmonic modes; see Eq. (11) below.
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As a function of time, ¢'79 ) has singularities only in
the lower-half complex plane, and, therefore, I, = 0 for
V = 0. By inspection of Eq. (9), we also observe that
I,(—=8) = —1,(8). With Eq. (7), we conclude that I, is
odd both in magnetic field and chiral angle. In fact, I, is
the only odd-in-B contribution, since the odd-in-V part of
the current turns out to be even in B. We can now state a
first necessary condition for /, # 0, namely, & # 0, which
requires the simultaneous breaking of time reversal and
inversion symmetry. Approximating the impurity potential
as U(x) = > ,U;6(x — x;), Eq. (9) becomes

4eK

Le=- (ma)?

Z Uj Uk Sin(Zkijk)
J>k

X f dtcos(eV[t + 8xj/vo]) Ime!™G (D, (10)

with xj = x; — x;. Then a second necessary condition
arises: There should be just a few impurities. The function
G=(x, t) changes slowly on the scale k', and, when one
has to sum over many impurities, I, = 0 due to the fast
oscillations of sin(2kzx ) in Eq. (10). In such a disordered
case, however, fluctuations exhibit related magnetochiral
transport effects [8]. When only a few impurities (but at
least two) are present, there is no averaging, and the effect
survives in the current, albeit its magnitude and sign are, of
course, sample-dependent. It is likely that the experiments
of Ref. [10] were performed on samples with not too many
impurities, for otherwise strong localization effects char-
acteristic for 1D systems would render them insulating.
Below, we focus on the simplest case of two impurities
separated by a distance L = x, — x;; see also Ref. [23].
Such a controlled two-impurity setup can be experimen-
tally realized in individual SWNTs [24].

As further evaluation of Eq. (10) requires numerical
integration routines, we first examine the spinless single-
band version of Eq. (4), which contains the essential phys-
ics and allows one to compute /, in closed form [25]. Given
the Fermi velocities v,—g/; -~ = v(1 = §) [corresponding
to Eq. (2)], the plasmon velocities of the clean interacting
system are ug/;, = v(1/K * &) [corresponding to Eq. (7)].
The plasmon lesser Green’s function is

K T
G<(x, 1) = ;—ﬂ_Zln[ i sinh(Z—[x —ira — ru,t])}

maTl ,
(11
Using 2ugu; /(ug + uy) =~ v/K, some algebra yields
2¢K?> U,U ~ p
I, =20 22 ()K= 6in(2k L) T2K 1 e~ KT
L v

(1 + K —iV/T)
T(K)Q2 —iv/T)

X sin[8(1 — K*)V/K] Im[

X TE 1K= iV/T2 = 10T ) | a2)

where I' is the Gamma function and F' the hypergeometric
function [26]. We introduced dimensionless temperature
and voltage

27TkBT
h/(KL)’

f= p= 1Vl
N hv/(KL)

(13)

Obviously, I, = 0 in the noninteracting case (K = 1), and,
thus, interactions provide a third necessary condition for
I, # 0. Equation (12) now allows one to analyze several
limits of interest. First, one recognizes an oscillatory de-
pendence on the doping level u = vk tuned by a back-
gate voltage, similar to what is seen experimentally [10].
Second, a(7T) [see Eq. (1)] is exponentially small for 7' >
1 but shows power-law scaling a(T < 1) « T?K72 at low
temperatures, implying a huge increase in a(7T") when low-
ering 7. Third, in the zero-temperature limit, Eq. (12)
yields

1,(V) o sin[8(1 — K2)V/KIVEV2 0, p (V) (14)

with the Bessel function J, [26]. This implies the low-
voltage scaling I, « V?K a posteriori justifying our per-
turbative treatment of the impurity potential. Remarkably,
1, shows oscillatory behavior as a function of the bias
voltage V. As one can see from Eq. (14), there are two
different oscillation periods:

2ah KA
—Zmy y, — _KaV (15)

U eKL”’ 2 5(1-KY

For strong interactions, AV, can, in principle, provide
direct information about §. In any case, AV, should be
readily observable and yields already the Luttinger pa-
rameter K. Inspection of Eq. (10) suggests that the physical
reason for these oscillations is the quantum interference
between right- and left-moving waves traveling between
the two impurities with different velocities.

FIG. 1. Even-in-voltage part of the current /, (in nA) as a
function of bias voltage (in V) for several temperatures. Results
are shown for a (10,4) SWNT with K = 0.23, B =16 T, con-
taining  two  impurites (L =20nm, U, =v/2).
Inset: Coefficient @(7) [in uSV~!T~!] defined in Eq. (1) as a
function of temperature in double-logarithmic scales.
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Let us then go back to the full four-channel case and
perform the integration in Eq. (10) numerically. To be
specific, we consider a long and adiabatically connected
(10, 4) SWNT with two symmetric impurities separated by
L =20 nm. Figure 1 shows I, as a function of V for
several T. Oscillatory behaviors with bias voltage are
clearly visible. With decreasing temperature, /, increases
and one gets power-law scaling of a(T) o« TK=1/2 at Jow
T (see inset in Fig. 1), generalizing the above single-
channel result. Notably, «(T) has the same sign for a given
parameter set, in qualitative agreement with experiments
[10]. Within our parameter choices, the order of magnitude
in a(T) also agrees with Ref. [10]. In any case, the picture
obtained in the single-channel version is essentially recov-
ered under the four-channel calculation.

To conclude, we have analyzed nonlinear magnetochiral
transport properties of interacting single-wall carbon nano-
tubes. In chiral tubes, measurement of the odd-in-B com-
ponent I, (which must be even in V) provides direct
information about interactions and chirality not accessible
otherwise. For two impurities, we have presented detailed
analytical results for /,. We predict oscillations of /, as a
function of bias voltage, which provide direct information
about the interaction parameter K. Moreover, at low tem-
peratures, power-law scaling is found and leads to an
enhancement of /,. In future work, our approach should
be useful when calculating fluctuations of transport coef-
ficients in disordered interacting SWNTs.
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